Speakers details
- Home |
- Speakers
오혜연 교수는 2008년에 MIT에서 박사학위를 받고 한국과학기술원(KAIST) 전산학부에 부임하였다. 오혜연 교수의 연구는 기계학습과 전산사회과학이다. 기계학습 기법을 통해 블로그, 온라인 뉴스 등을 분석하고, 소셜네트워크에서의 대화를 통한 감정 변화 예측, 리트윗 패턴을 통한 가짜뉴스 탐지, 온라인 게임에서의 팀웍에 대한 연구 결과를 전산학과 최고 우수 학회에서 발표하였다. 전산사회과학 연구 분야에서 정치학, 사회학, 역사학자들과의 융합 연구도 활발히 진행하고 있다. 또한 온라인 프로그래밍 교육 플랫폼을 만들어 학생-조교의 상호 관계, 자동 질의 응답, 동료평가 등에 대한 연구도 하고 있다. 오혜연 교수는 기계학습 분야의 최고 학회인 NeurIPS 학회의 프로그램 체어, 튜토리얼 체어, ICLR 학회의 학술위원장을 맡았다.
Dr. Alice Oh is a Professor in the School of Computing at KAIST. She received her PhD in 2008 from MIT and joined KAIST in the same year. Her major research area is at the intersection of machine learning and computational social science. Within machine learning, she studies various models designed for analyzing written text including social media posts, news articles, and personal conversations. She also looks at non-textual data such as social network friendship and logs from online games for which she interacts closely with social scientists for an interdisciplinary approach to computational social science. A particular application focus of applying computational methods to a social science problem is computer science education. Her students have developed a Web-based system for improving programming education, and through that system they collect and analyze large-scale, fine-grained student behavior data. With that data, they aim to understand the behaviors of students and teaching assistants via machine learning models such that they can offer identification of students in need of assistance, provide automatic assistance for simple problems, track students’ progress, and help students to learn better through social learning. She has served as Tutorial Chair for NeurIPS 2019, Diversity & Inclusion Chairfor ICLR 2019, and Program Chair for ICLR 2021. She is serving as Program Chair for NeurIPS 2022 and General Chair for ACM FAccT 2022.